Barrett, M. (2020). ggdag: Analyze and create elegant directed acyclic graphs.

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.

Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411.

Bürkner, P.-C. (2020). brms: Bayesian regression models using “Stan”.

Fryar, C. D., Gu, Q., Ogden, C. L., & Flegal, K. M. (2016). Anthropometric reference data for children and adults: United States, 2011–2014 (Vital and Health Statistics Series 3, Issue 39). National Center for Health Statistics.

Hullman, J., Resnick, P., & Adar, E. (2015). Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability of variable ordering. PLoS ONE, 10, e0142444.

Kale, A., Nguyen, F., Kay, M., & Hullman, J. (2019). Hypothetical outcome plots help untrained observers judge trends in ambiguous data. IEEE Transactions on Visualization & Computer Graphics, 25, 892–902.

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan (2nd ed.). Chapman & Hall/CRC.

Pedersen, T. L., & Robinson, D. (2020). gganimate: A grammar of animated graphics.

Textor, J., van der Zander, B., & Ankan, A. (2020). dagitty: Graphical analysis of structural causal models.

Wickham, H. (2019). tidyverse: Easily install and load the ’tidyverse’.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.